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Overview

• Choice of modulation technique is an important consideration

– Main considerations

• Spectrum efficiency (bps/Hz)

• Power efficiency (SNR for a given BER)

• Complexity/cost/power consumption

• Robustness to Impairments

– Linear distortion  (filters)

– Nonlinear distortion (amplifiers)

– Interference (ACI, CCI, ISI)

– Radio propagation (path loss, fading, doppler, delay spread)

• Digital vs. analog modulation
• Better spectral efficiency

• Resistance to channel impariments

• Lower power

• Better security and Privacy
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Overview cont’d

• In general any modulated signal can be represented as

– s(t) = A(t) cos( wct + φ(t) ) = Re{ A(t) eφ(t) ejwct }

• A(t) amplitude φ(t): pahse dφ(t)/dt : instantaneous frequency

– s(t) = A(t) cos(φ(t)) cos(wct) - A(t) sin(φ(t)) sin(wct) 

• A(t) cos(φ(t)) :  In-phase component

• A(t) sin(φ(t))  :  Quadrature component

– In general it is assumed that the variations in phase and amplitude are 

much slower than the carrier frequency

• Noise

– Assume that additive white Gaussian noise (AWGN) is filtered in the 

receiver resulting in narrowband noise n(t)

• n(t) = nI(t) cos(wct) - nQ(t) sin(wct)

• Two types of digital modulation

– Linear

– Constant envelope

• More bandwidth

• Resistant to changes in signal amplitude caused by the channel
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Modulation Schemes in Wireless Systems
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Linear Modulation

• S(t) =  Re{ u(t) ejwct }

– s(t): transmitted signal u(t): baseband equivalent signal

– u(t)  = Σn dn g(t-nT) dn = an + jbn 

• T: symbol period

• dn: a sequence of complex numbers representing the information sequence

• Using this representation, all linear modulation schemes can be 

represented as:

– s(t) = [ Σn an g(t-nT) ]  cos(wct)  - [ Σn bn g(t-nT) ] sin(wct) 

• Types of linear modulation

– M-arry Quadrature Amplitude Modulation (M-QAM)

• Square constellation

– M-arry phase shift keying (M-PSK)

• 4-PSK (QPSK) same as 4-QAM

– offset QPSK π/4-QPSK

– Orthogonal Frequency Division Multiplexing (OFDM)
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Passband Modulation

• Frequency content is centered around a carrier frequency fc

– Requires carrier as well as timing adjustment at the receiver

– Two dimensional and multi-dimensional transmission using sine and 

cosine waveforms

• Allows frequency division multiplexing (FDM)

– Frequency division multiple access (FDMA)

• Examples of passband modulation 

– Quadrature Amplitude Modulation (QAM)

– Phase Shift Keying (PSK)

– Frequency Shift Keying (FSK) and GMSK

– Orthogonal Frequency Division Multiplexing (OFDM)
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Aside: Baseband Equivalent Signals and Systems

• All Simulations take place in the digital domain

– Nyquist Theorem: Simulation sampling frequency has to be at least 

twice the highest frequency content of the signal

• For passband signals

– Carrier frequency can range from a few tens of kHz to GHz

– Sampling at twice the carrier frequency requires a large amount of 

unnecessary oversampling to model the carrier which is 

“uninteresting”

• Baseband euivalent signal models allow us to model the 

narrowband passband signal at baseband using complex notation

– Simulation sampling frequency is reduced to two times the signal

bandwidth instead of the carrier frequency

– Significant speed improvement
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Baseband Equivalence, A Heuristic Approach

• Sine and Cosine signals form a 2-dimensional orthogonal basis

and axes form a 2-dimensional orthogonal basis

• Let and replace cosine and sine in our studies

– Transmit ai(t) using the real component and aq(t) using the imaginary 
component of the complex signal

– Equivalent transmitter and receiver block diagram
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Baseband Equivalence cont’d

• The complex equivalent signals occupy a bandwidth equal to the 

bandwidth of the modulating signals

– The simulation sampling frequency needs to be twice the bandwidth of 

the baseband signal not the passband signs

• Baseband Equivalence of Channels

– Channels by themselves are not necessarily band limited

– Passband systems use bandpass filters to reduce the amount of noixe 

entering the system and to reduce inter-channel interference

– The section of the channel which is of interest lies within the 

frequency range defined by the bandpass filters

• The channel can be considered to be a narrowband channel centered about a 
frequency fc

– Can define baseband equivalence for channels.
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Frequency Domain Representation
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Structure for Generating Linear Modulated Signals

• Frequency content of the transmitted 
signal is depends on the pulse shape 

g(t)

• Each symbol could correspond to a 
different phase AND/OR amplitude

Bits at Fbit

Symbol
Mapper

1 bit / Sym: BPSK
2 bits / Sym: 4-QAM or QPSK

4 bits / Sym: 16-QAM
5 bits / Sym: 32-QAM
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Quadrature (Imag)
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)sin()()()cos()()()( twnTtgnbtwnTtgnats c

n

c

n

∑∑ −+−=

Symbols at Fsym Waveform at mFsym

D/A

D/A

LPF

LPF

Ts = 1/Fsym

16-QAM Constellation

Pulse Shaping 
Filters g(t)

-sin(wct)

cos(wct)

∑ −
n

nTtgnb )()(

∑ −
n

nTtgna )()(



EE233B Wireless Communication Systems

12

Phase Shift Keying

• Data is transmitted in the phase on the carrier 

∑ +=
n

nctfts )2cos()( φπ

)sin()2sin()cos()2cos()( nc

n

nc tftfts φπφπ∑ −=

� φφφφn is different for each symbol

• The second equation suggests that

– PSK is similar to QAM

• Replace integer scaling of sine and cosine signals with cos(φn) and sin(φn)

• QPSK is identical to 4-QAM

– Symbols reside on a circle in the complex plane
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Offset QPSK

• Used in uplink of IS-95 (CDMA) 2nd generation cellular systems

• The Inphase (I)  and the Quadrature (Q) rails are offset (staggered) 
by half a symbol period

– Transitions occur every Tsym/2 = Tbit but only on one of the rails

– Tranistions from one symbol to the next will first traverse along the y 

(or x) axis for the first Tbit seconds and then along the x (or y) axis for 

the second Tbit seconds

• Motivation

– If QPSK is realized using a pulse shape other than a square pulse, the 

passband signal enelope will not be constant

• Regular QPSK envelope will go through zero during some transitions

Transitions for

an OQPSK 

modulated signal

Transitions for

a QPSK 

modulated signal
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OQPSK cont’d

• Regular QPSK envelope will go through zero during some 

transitions

– Increased peak-to-average power (PAP) ratio for the modulated signal

– Requires a more linear front end amplifier to maintain the increased 

dynamic range

• More DC power is wasted while the signal amplitude is small to guarantee 
amplifier linearity for periods when the amplitude is large

• Reduced power efficiency

• OQPSK eliminates the need to cross the zero envelope point in 

going from one symbol to the next

– Reduced PAP ratio

OQPSK QPSK
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OQPSK Block Diagram
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ππππ/4-QPSK

• Used in IS-136 North american digital cellular standard

• Use 2 QPSK constellations one rotated by ππππ/4 radians with respect 
to the other

– Alternatively pick symbols from one or the other constellation

• Reduces PAP ratio by eliminating signal envelope transitions 

through the origin of the constellation
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QAM and QPSK Constellations

4-QAM, QPSK 8-PSK

p/4 QPSK

16-QAM 32-QAM

Offset QPSK
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Raised Cosine Pulse Shape

• Time Domain

– Finite time

– Sampling phase may be off by as much as +/- Tsym/2 with no ISI

• Frequency Domain

– Sinc (sin(x)/x) shape

– Infinite bandwidth

• Infinite bandwidth requirement is impractical
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Raised Cosine (cont’d)

• Time Domain

– No ISI with perfect timing

– Sinc has 1/t (1/n) roll-off

– Infinite ISI (closed eye) with slight timing offset since 

• Frequency Domain

– Ideal (flat) frequency response

– Band limited
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Raised Cosine

• Allow controlled frequency roll-off instead of brick wall 

characteristic

– The time domain pulse has a sinc-like shape with 1/n3 roll off
• Eye remains open even in the presence of sampling phase offset

• α referred to as the roll-off factor (or excess bandwidth) trades off bandwidth for immunity to sampling 
phase offset

• Larger a results in larger bandwidth occupancy and increased immunity to sampling phase offset

• Consider sampling the raised cosine pulse at the baud frequency
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The Raised Cosine Pulse

– H(f) = 1 |f| < (1-αααα)/2T

– H(f) = 0.5 + 0.5 sin(ππππT( (0.5T-|f|) / αααα) (1-αααα)/2T < |f| < (1+αααα)/2T

– H(f)  = 0 (1+αααα)/2T < |f|
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Eye Diagram 

• Created by overlaying segments of the received signal

– Segments must be an integer multiple of the symbol period

• Eye diagram provides information about

– Optimum sampling instant

– Signal to noise ratio

– Tolerance to sampling phase jitter (or offset)

• Eye diagram for a raised-cosine waveform 
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Differential QPSK (DQPSK)

• In QPSK each symbol represents a unique pair of information bits

• In DQPSK data is differentially encoded 

– Encoded in the phase difference between consecutive samples

– DQPSK does NOT require carrier phase match between the transmitter 

and receiver

• QPSK
• s(t) = A cos (wct + (i-1)π/2 + λ )

– I =1,2,3,4 depending on the desired transmitted symbol

– λ: initial phase

• s(t) = A cosφi cos(wct) - A sinφi sin(wct) 

– In-phase component Ii = cosφi

– Quadrature component Qi = sin(φi)

• DQPSK
• Ii = Ii-1 cos∆φi - Qi-1 sin∆φi Qi = Ii-1 sin∆φi + Qi-1 cos∆φi 

� ∆φi = π/4, 3π/4, -3π/4, -π/4 for symbols 1,2,3,4 respectively

• ππππ/4-DQPSK is the modulation for IS-126/54
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Orthogonal Frequency Division Multiplexing (OFDM)
Discrete Multitone (DMT)

• Converts a wideband signal into a series of narrowband signals 
placed side-by-side in the frequency domain

• Pros

– Immune to the effects of a dispersive channels

• No need for equalization

• Implemented using an FFT at the transmitter and receiver.

• Cons

– High peak to average ratio imposes large linearity constraint on

transmit power amplifier

• Important consideration in wireless systems

• Some overhead associated with guard interval

• Applications

– ADSL, European DAB, High speed wireless LANs
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Basic Concept

• Consider single frequency modulation

• Consider multicarrier modulation

cos(2πfct) fc

cos(2π(fc+f1)t)
fc+f1

T  

fc+1/T
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fccos(2π(fc+f1)t) fc+f1
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a2



EE233B Wireless Communication Systems

26

Orthogonal Frequencies

• Let ∆∆∆∆f = 1/T for multicarrier modulation

– For each sub-carrier frequency, the contribution from all other sub-

carriers are zero

– Orthogonal waveforms

– Analogous to the use of sinc pulses in the time domain having brick 

wall frequency response

– Orthogonal Frequency Division Multiplexing

– Each carrier may be modulated independently, 

• BPSK, 4- 16- QAM, 

– Frequency selective channels will result in some sub-carriers having 

higher SNR than others

• Use higher size constellations with higher SNR.

fc fc+f1 fc+2f 1
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Realization with an FFT

• For each frequency fc+n∆∆∆∆f use sine and cosine (quadrature) 
waveforms

– Each quadrature pair is then modulated with a pair of information bits 

which we will denote as an and bn

• Consider the baseband equivalent signal for each quadrature pair 

– (an+jbn)exp(-j2ππππn∆∆∆∆ft)      n=0, ..., N-1 for N pair of sine and cosines

• The output signal y(t) is the sum of quadrature modulated signals

• Let us sample the time signal with a sampling period of  (1/N∆∆∆∆f)

– This is the inverse FFT of the complex sequence (an+jbn)

• Note that the complex baseband notation allows us to represent signals with 
frequency contents up to the sampling frequency. 
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OFDM Transmission

• Demodulation

– The receiver must perform the inverse operation of the modulator

– FFT at the receiver

• Real Channel suffers from multipath and frequency selectivity 

(notches in the frequency domain)

– Multipath

• Causes one block to interfere with another

• Use guard interval between blocks

– Eliminates the orthogonality among tones

• Use cyclic prefix on each block

– Frequency selectivity

• Each tone has a different phase rotation and amplitude
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Cyclic Prefix

• FFT assumes a cyclic time waveform with period Tblock

– Transmitted block can be assumed cyclic

– Channel multipath is not necessarily cyclic with period Tblock

– Convolution of channel response and transmitted block is not cyclic

• Cyclic Prefixing the transmitted block can make the received block 

look cyclic to the FFT

Original B lock Cyclic

P refix
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Minimum Shift Keying (MSK)

• A form of continuous phase frequency shift keying (FSK) 

modulation

• FSK

– Data bit 0 -> f1 = fc + ∆∆∆∆f

– Data bit 1 -> f2 = fc - ∆∆∆∆f

• MSK has modulation index = 1/2 

� ∆∆∆∆f = 1/4T

• T is the bit interval

– Constant amplitude modulation

– First null of the power spectral density occurs farther out than for 

QPSK

– Modulation skirts fall off faster than unfiltered QPSK

• Transmitted signal
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MSK

During a bit (symbol) period

θθθθ(t) = θθθθo ± ππππ/2 (t/Ts)

Phase of signal at the end of odd bit intervals can be +ππππ/2 or -ππππ/2

Phase of signal at the end of even bit intervals can be 0 or 2ππππ
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MSK

– For MSK si(t) can be written in a different form as;

– This is offset (staggered) QPSK with a half-sine pulse shape instead of a 
square, or raised-cosine, etc.

• Can be detected using coherent demodulation as with other linear modulation schemes
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Gaussian MSK (GMSK)

• Used in GSM, DECT, HIPERLAN

• MSK has considerable out of band radiated energy

• Lower the out of band energy by lowpass filtering the binary input 
data prior to modulation

– Guarantees constant envelope property

• Lowpass filter should present the following properties

– Narrow bandwidth and sharp cutoff

• suppress high frequency components

– Low overshoot impulse response

• protect against excessive instantaneous frequency deviation

– Preservation of the filter output pulse area

• Corresponds to a phase shift of π/2 for simple coherent detection

– Use a Gaussian Lowpass filter
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Power Spectral Density, Overview

• Definition

– The power spectral density (PSD) gives the distribution of power for a 

random process over a frequency range of interest

– The signal energy within a frequency band f1 to f2 is given by the 

integral of the PSD from f1 to f2.

• Sxx(f): PSD of the random process x(t)

• Rxx(τ) : Autocorrelation function of x(t)

– Recall, for a linearly modulated signal

• s(t) = [ ΣΣΣΣn an g(t-nT) ] cos(wct)  - [ ΣΣΣΣn bn g(t-nT) ] cos(wct) 

∫
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PSD for a Linearly Modulated Signal

• Consider a baseband linearly modulated signal

• s(t) = ΣΣΣΣn an g(t-nT) 

– {an} is wide-sense stationary (WSS)

• Mean and autocorrelation functions are constants and independent of time 

• WSS is less stringent than strict stationarity since it does not require the pdf to be 
the same for all time.

– The information symbols {an} are mutually uncorrelated

• E[ an* an+m ] = σ2+µ2 for m=0 E[ an* an+m ] = µ2 For m≠≠≠≠0

• The PSD Equation
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PSD of Some Modulation Schemes
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Peak to Average Power (PAP) Ratio

• Definition:

– PAP Ratio: The ratio of the peak power of the signal ENVELOPE to its 

average value.

– Crest factor: The ratio of the peak power of the actual (real) 

transmitted waveform to its average value

• QPSK with square pulse shape has constant envelope

• Filtering QPSK causes the signal amplitude to vary significantly

– Strongest dip occurs when signal passes through zero envelope

• Instantaneous average power is reduced during this transition

• Overall average power is reduced and the PAP ratio is increased

– OQPSK and ππππ/4-QPSK reduce the PAP ratio by eliminating transitions 
through the origin (look at constellation plot)
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PAP cont’d

• Ratio of the peak power of the modulated carrier to its average 

power

– Ideal BPSK using square pulses.

• Peak power = A2

• Average power = average power per period = A2/2 

• PAP ratio is a constant for all time.

– Filtered BPSK 

• Peak power = A2

• Average power per carrier period = A2an/2, where an<1 varies from one period of 
the carrier to the next

– Overall signal’s PAP ratio is lower than that of the ideal BPSK signal

• Power amplifier wastes DC power during cycles when carrier 

amplitude is small. 

– Lower amplifier power efficiency (ratio of DC power dissipation to 

output signal power)



EE233B Wireless Communication Systems

39

Power Amplifier
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Third order Intercept Point
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