Narrowband Digital Modulation

EE 233B

Wireless Communication Systems

EE233B Wireless Communication Systems

Overview

- Choice of modulation technique is an important consideration
 - Main considerations
 - Spectrum efficiency (bps/Hz)
 - Power efficiency (SNR for a given BER)
 - Complexity/cost/power consumption
 - Robustness to Impairments
 - Linear distortion (filters)
 - Nonlinear distortion (amplifiers)
 - Interference (ACI, CCI, ISI)
 - Radio propagation (path loss, fading, doppler, delay spread)

Digital vs. analog modulation

- Better spectral efficiency
- Resistance to channel impariments
- Lower power
- Better security and Privacy

Overview cont'd

- In general any modulated signal can be represented as
 - $s(t) = A(t) \cos(w_{c}t + \phi(t)) = Re\{A(t) e^{\phi(t)} e^{jw_{c}t}\}$
 - A(t) amplitude $\phi(t)$: pahse $d\phi(t)/dt$: instantaneous frequency
 - $s(t) = A(t) \cos(\phi(t)) \cos(w_c t) A(t) \sin(\phi(t)) \sin(w_c t)$
 - *A*(*t*) cos(ϕ (*t*)) : In-phase component
 - *A*(*t*) *sin*(ϕ (*t*)) : *Quadrature component*
 - In general it is assumed that the variations in phase and amplitude are much slower than the carrier frequency
- Noise
 - Assume that additive white Gaussian noise (AWGN) is filtered in the receiver resulting in narrowband noise n(t)
 - $n(t) = n_{l}(t) \cos(w_{c}t) n_{Q}(t) \sin(w_{c}t)$
- Two types of digital modulation
 - Linear
 - Constant envelope
 - More bandwidth
 - Resistant to changes in signal amplitude caused by the channel

EE233B Wireless Communication Systems

Modulation Schemes in Wireless Systems

Systems	Voice	Data	Comments
Analog cellular			
AMPS (U.S.), TACS	FM	FSK	AMPS: R = 10 Kbps, spectral
(U.K.)			efficiency = 0.33 bits/sec/Hz
NTT (Japan)	FM	FSK	-
MATS-E (German)	PM	FFSK	
Nordic 450/900	PM	FSK (MSK)	
C-450 (German)	PM	FSK	
Digital cellular			
ĞSM	GMSK	GMSK	R _d = 270.8 Kbps, spectral efficiency = 1.35 bits/sec/Hz
NADC (IS-54)	π / 4-DQPSK	π/ 4-DQPSK	R _d = 48.6 Kbps, spectral efficiency = 1.62 bits/sec/Hz
ЛС	π/ 4-DQPSK	π/ 4-DQPSK	R _d = 42 Kbps, spectral efficiency = 1.6 bits/sec/Hz, B _b T = 0.3
Cordless Telephone			C C
CT1	Analog, FM		
CT2	Digital, MSK	MSK	R _d = 72 Kbps, spectral efficiency = 0.72 bits/sec/Hz
CT3, DECT	GMSK	GMSK	$R_d = 1.152$ Mbps, spectral efficiency = 0.67 bits/sec/Hz, $B_bT = 0.5$

Linear Modulation

- $S(t) = Re\{ u(t) e^{jw_{c}t} \}$
 - s(t): transmitted signal

u(t): baseband equivalent signal

$$- u(t) = \sum_n d_n g(t - nT)$$

 $d_n = a_n + jb_n$

- T: symbol period
- *d_n*: a sequence of complex numbers representing the information sequence
- Using this representation, all linear modulation schemes can be represented as:

 $- s(t) = [\Sigma_n a_n g(t-nT)] \cos(w_c t) - [\Sigma_n b_n g(t-nT)] \sin(w_c t)$

- Types of linear modulation
 - M-arry Quadrature Amplitude Modulation (M-QAM)
 - Square constellation
 - M-arry phase shift keying (M-PSK)
 - 4-PSK (QPSK) same as 4-QAM
 - offset QPSK $\pi/4$ -QPSK
 - Orthogonal Frequency Division Multiplexing (OFDM)

- Frequency content is centered around a carrier frequency f_c
 - Requires carrier as well as timing adjustment at the receiver
 - Two dimensional and multi-dimensional transmission using sine and cosine waveforms
- Allows frequency division multiplexing (FDM)
 - Frequency division multiple access (FDMA)
- Examples of passband modulation
 - Quadrature Amplitude Modulation (QAM)
 - Phase Shift Keying (PSK)
 - Frequency Shift Keying (FSK) and GMSK
 - Orthogonal Frequency Division Multiplexing (OFDM)

Aside: Baseband Equivalent Signals and Systems

- All Simulations take place in the digital domain
 - Nyquist Theorem: Simulation sampling frequency has to be at least twice the highest frequency content of the signal
- For passband signals
 - Carrier frequency can range from a few tens of kHz to GHz
 - Sampling at twice the carrier frequency requires a large amount of unnecessary oversampling to model the carrier which is "uninteresting"
- Baseband euivalent signal models allow us to model the narrowband passband signal at baseband using complex notation
 - Simulation sampling frequency is reduced to two times the signal bandwidth instead of the carrier frequency
 - Significant speed improvement

Baseband Equivalence, A Heuristic Approach

Sine and Cosine signals form a 2-dimensional orthogonal basis
 R and *J* axes form a 2-dimensional orthogonal basis

- Let *R* and *J* replace cosine and sine in our studies
 - Transmit a_i(t) using the real component and a_q(t) using the imaginary component of the complex signal
 - Equivalent transmitter and receiver block diagram

Baseband Equivalence cont'd

- The complex equivalent signals occupy a bandwidth equal to the bandwidth of the modulating signals
 - The simulation sampling frequency needs to be twice the bandwidth of the baseband signal not the passband signs
- Baseband Equivalence of Channels
 - Channels by themselves are not necessarily band limited
 - Passband systems use bandpass filters to reduce the amount of noixe entering the system and to reduce inter-channel interference
 - The section of the channel which is of interest lies within the frequency range defined by the bandpass filters
 - The channel can be considered to be a narrowband channel centered about a frequency f_c
 - Can define baseband equivalence for channels.

Frequency Domain Representation

Structure for Generating Linear Modulated Signals

$$s(t) = \sum_{n} a(n)g(t - nT)\cos(w_{c}t) + \sum_{n} b(n)g(t - nT)\sin(w_{c}t) \qquad T_{s} = 1/F_{sym}$$

- Frequency content of the transmitted signal is depends on the pulse shape g(t)
- Each symbol could correspond to a different phase AND/OR amplitude

16-QAM Constellation

Phase Shift Keying

• Data is transmitted in the phase on the carrier

$$s(t) = \sum_{n} \cos(2\pi f_c t + \phi_n)$$
$$s(t) = \sum_{n} \cos(2\pi f_c t) \cos(\phi_n) - \sin(2\pi f_c t) \sin(\phi_n)$$

- ϕ_n is different for each symbol
- The second equation suggests that
 - PSK is similar to QAM
 - Replace integer scaling of sine and cosine signals with $cos(\phi_n)$ and $sin(\phi_n)$
 - QPSK is identical to 4-QAM
 - Symbols reside on a circle in the complex plane

- Used in uplink of IS-95 (CDMA) 2nd generation cellular systems
- The Inphase (I) and the Quadrature (Q) rails are offset (staggered) by half a symbol period
 - Transitions occur every $T_{sym}/2 = T_{bit}$ but only on one of the rails
 - Tranistions from one symbol to the next will first traverse along the y (or x) axis for the first T_{bit} seconds and then along the x (or y) axis for the second T_{bit} seconds
- Motivation
 - If QPSK is realized using a pulse shape other than a square pulse, the passband signal enelope will not be constant
 - Regular QPSK envelope will go through zero during some transitions

EE233B Wireless Communication Systems

OQPSK cont'd

- Regular QPSK envelope will go through zero during some transitions
 - Increased peak-to-average power (PAP) ratio for the modulated signal
 - Requires a more linear front end amplifier to maintain the increased dynamic range
 - More DC power is wasted while the signal amplitude is small to guarantee amplifier linearity for periods when the amplitude is large
 - Reduced power efficiency
- OQPSK eliminates the need to cross the zero envelope point in going from one symbol to the next
 - Reduced PAP ratio

OQPSK Block Diagram

Transmitter block diagram

Transmitter waveform

π/**4-QPSK**

- Used in IS-136 North american digital cellular standard
- Use 2 QPSK constellations one rotated by π/4 radians with respect to the other
 - Alternatively pick symbols from one or the other constellation
- Reduces PAP ratio by eliminating signal envelope transitions through the origin of the constellation

QAM and QPSK Constellations

Raised Cosine Pulse Shape

Consider first a square pulse shape

- Time Domain
 - Finite time
 - Sampling phase may be off by as much as +/- $T_{sym}/2$ with no ISI
- Frequency Domain
 - Sinc $(\sin(x)/x)$ shape
 - Infinite bandwidth
- Infinite bandwidth requirement is impractical

Raised Cosine (cont'd)

- Time Domain
 - No ISI with perfect timing
 - Sinc has 1/t (1/n) roll-off
 - Infinite ISI (closed eye) with slight timing offset since
- Frequency Domain
 - Ideal (flat) frequency response
 - Band limited

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Raised Cosine

 Allow controlled frequency roll-off instead of brick wall characteristic

- The time domain pulse has a sinc-like shape with $1/n^3$ roll off
 - · Eye remains open even in the presence of sampling phase offset
 - α referred to as the roll-off factor (or excess bandwidth) trades off bandwidth for immunity to sampling phase offset
 - Larger a results in larger bandwidth occupancy and increased immunity to sampling phase offset
- Consider sampling the raised cosine pulse at the baud frequency

The Raised Cosine Pulse

- H(f) = 1
- $H(f) = 0.5 + 0.5 \sin(\pi T((0.5T |f|) / \alpha)) \qquad (1 \alpha)/2T < |f| < (1 + \alpha)/2T$
- H(f) = 0

 $|f| < (1-\alpha)/2T$ $(1-\alpha)/2T < |f| < (1+\alpha)/2T$ $(1+\alpha)/2T < |f|$

$$h(t) = \frac{1}{T} \frac{\cos(\pi \alpha T)}{1 - 4\alpha^2 (t^2 / T^2)} \frac{\sin(\pi t T)}{\pi t / T}$$

- Created by overlaying segments of the received signal
 - Segments must be an integer multiple of the symbol period
- Eye diagram provides information about
 - Optimum sampling instant
 - Signal to noise ratio
 - Tolerance to sampling phase jitter (or offset)
- Eye diagram for a raised-cosine waveform

EE233B Wireless Communication Systems

- In QPSK each symbol represents a unique pair of information bits
- In DQPSK data is differentially encoded
 - Encoded in the phase difference between consecutive samples
 - DQPSK does NOT require carrier phase match between the transmitter and receiver
- QPSK
 - $s(t) = A \cos (w_c t + (i-1)\pi/2 + \lambda)$
 - *I* = 1,2,3,4 depending on the desired transmitted symbol
 - λ : initial phase
 - $s(t) = A \cos\phi_i \cos(w_c t) A \sin\phi_i \sin(w_c t)$
 - In-phase component $I_i = \cos \phi_i$
 - Quadrature component $Q_i = sin(\phi_i)$
- DQPSK
 - $I_i = I_{i-1} \cos \Delta \phi_i Q_{i-1} \sin \Delta \phi_i$ $Q_i = I_{i-1} \sin \Delta \phi_i + Q_{i-1} \cos \Delta \phi_i$ $\Delta \phi_i = \pi/4, \ 3\pi/4, \ -3\pi/4, \ -\pi/4 \text{ for symbols } 1,2,3,4 \text{ respectively}$
- $\pi/4$ -DQPSK is the modulation for IS-126/54

Orthogonal Frequency Division Multiplexing (OFDM) Discrete Multitone (DMT)

- Converts a wideband signal into a series of narrowband signals placed side-by-side in the frequency domain
- Pros
 - Immune to the effects of a dispersive channels
 - No need for equalization
 - Implemented using an FFT at the transmitter and receiver.
- Cons
 - High peak to average ratio imposes large linearity constraint on transmit power amplifier
 - Important consideration in wireless systems
 - Some overhead associated with guard interval
- Applications
 - ADSL, European DAB, High speed wireless LANs

Basic Concept

Consider single frequency modulation

Consider multicarrier modulation

EE233B Wireless Communication Systems

Orthogonal Frequencies

- Let $\Delta f = 1/T$ for multicarrier modulation
 - For each sub-carrier frequency, the contribution from all other subcarriers are zero
 - Orthogonal waveforms
 - Analogous to the use of sinc pulses in the time domain having brick wall frequency response

- Orthogonal Frequency Division Multiplexing
- Each carrier may be modulated independently,
 - BPSK, 4- 16- QAM,
- Frequency selective channels will result in some sub-carriers having higher SNR than others
 - Use higher size constellations with higher SNR.

- For each frequency f_c+n∆f use sine and cosine (quadrature) waveforms
 - Each quadrature pair is then modulated with a pair of information bits which we will denote as a_n and b_n
- Consider the baseband equivalent signal for each quadrature pair
 - $(a_n+jb_n)exp(-j2\pi n\Delta ft)$ n=0, ..., N-1 for N pair of sine and cosines
- The output signal y(t) is the sum of quadrature modulated signals

$$y(t) = \sum_{n=0}^{N-1} (a_n + jb_n) e^{j 2 \pi n \Delta ft}$$

• Let us sample the time signal with a sampling period of $(1/N\Delta f)$

$$y(t)|_{t=mT} = \sum_{n=0}^{N-1} (a_n + jb_n) e^{\frac{j2\pi nm}{N}}$$

- This is the inverse FFT of the complex sequence (a_n+jb_n)
 - Note that the complex baseband notation allows us to represent signals with frequency contents up to the sampling frequency.

OFDM Transmission

- Demodulation
 - The receiver must perform the inverse operation of the modulator
 - FFT at the receiver
- Real Channel suffers from multipath and frequency selectivity (notches in the frequency domain)
 - Multipath
 - Causes one block to interfere with another
 - Use guard interval between blocks
 - Eliminates the orthogonality among tones
 - Use cyclic prefix on each block
 - Frequency selectivity
 - Each tone has a different phase rotation and amplitude

Cyclic Prefix

- FFT assumes a cyclic time waveform with period T_{block}
 - Transmitted block can be assumed cyclic
 - Channel multipath is not necessarily cyclic with period Tblock
 - Convolution of channel response and transmitted block is not cyclic
- Cyclic Prefixing the transmitted block can make the received block look cyclic to the FFT

Minimum Shift Keying (MSK)

- A form of continuous phase frequency shift keying (FSK) modulation
- FSK
 - Data bit 0 -> $f_1 = f_c + \Delta f$
 - Data bit 1 -> $f_2 = f_c \Delta f$
- MSK has modulation index = 1/2

 $\Delta f = 1/4T$

- T is the bit interval
- Constant amplitude modulation
- First null of the power spectral density occurs farther out than for QPSK
- Modulation skirts fall off faster than unfiltered QPSK
- Transmitted signal

$$s_i(t) = A\cos[2\pi f_i t + \theta_n + \frac{n\pi}{2}(-1)^{i-1}]$$
 $i = 1,2$

$$s_{i}(t) = A \cos[2\pi f_{c}t + 2\pi \Delta ft + \theta_{n} + \frac{n\pi}{2}(-1)^{i-1}]$$
$$\theta_{n} = \frac{\pi}{2} \sum_{k=-\infty}^{n-1} I_{k} \qquad I_{k} = 1, -1$$

During a bit (symbol) period

 $\theta(t) = \theta_o \pm \pi/2 \ (t/T_s)$

Phase of signal at the end of odd bit intervals can be $+\pi/2$ or $-\pi/2$ Phase of signal at the end of even bit intervals can be 0 or 2π

MSK

For MSK si(t) can be written in a different form as;

$$s_{i}(t) = \left[\sum_{n=-\infty}^{\infty} I_{2n}u(t-2nT)\right]\cos(2\pi f_{c}t) + \left[\sum_{n=-\infty}^{\infty} I_{2n+1}u(t-2nT-T)\right]\sin(2\pi f_{c}t)$$
$$u(t) = \begin{cases}\sin\left(\frac{\pi t}{2T}\right) & 0 \le t \le 2T\\0 & \text{otherwise}\end{cases}$$

- This is offset (staggered) QPSK with a half-sine pulse shape instead of a square, or raised-cosine, etc.
 - Can be detected using coherent demodulation as with other linear modulation schemes

Gaussian MSK (GMSK)

- Used in GSM, DECT, HIPERLAN
- MSK has considerable out of band radiated energy
- Lower the out of band energy by lowpass filtering the binary input data prior to modulation
 - Guarantees constant envelope property
- Lowpass filter should present the following properties
 - Narrow bandwidth and sharp cutoff
 - suppress high frequency components
 - Low overshoot impulse response
 - protect against excessive instantaneous frequency deviation
 - Preservation of the filter output pulse area
 - Corresponds to a phase shift of $\pi/2$ for simple coherent detection

VCO

- Use a Gaussian Lowpass filter

- Definition
 - The power spectral density (PSD) gives the distribution of power for a random process over a frequency range of interest
 - The signal energy within a frequency band f1 to f2 is given by the integral of the PSD from f1 to f2.

$$S_{xx}(f) = \int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j2\pi f\tau} d\tau$$

- $S_{xx}(f)$: PSD of the random process x(t)
- $R_{xx}(\tau)$: Autocorrelation function of x(t)

$$R_{xx}(\tau) = E[x(t)x^*(t-\tau)]$$

- Recall, for a linearly modulated signal
 - $s(t) = [\Sigma_n a_n g(t-nT)] cos(w_c t) [\Sigma_n b_n g(t-nT)] cos(w_c t)$

PSD for a Linearly Modulated Signal

- Consider a baseband linearly modulated signal
 - $s(t) = \sum_n a_n g(t-nT)$
 - {a_n} is wide-sense stationary (WSS)
 - · Mean and autocorrelation functions are constants and independent of time
 - WSS is less stringent than strict stationarity since it does not require the pdf to be the same for all time.
 - The information symbols $\{a_n\}$ are mutually uncorrelated
 - $E[a_n^* a_{n+m}] = \sigma^2 + \mu^2$ for m=0 $E[a_n^* a_{n+m}] = \mu^2$ For $m \neq 0$
- The PSD Equation

$$s_{xx}(f) = \frac{\sigma^2}{T} \left| G(f) \right|^2 + \frac{\mu^2}{T^2} \sum_{m=-\infty}^{\infty} \left| G\left[\frac{m}{T}\right] \right|^2 \delta\left(f - \frac{m}{T}\right)$$

- Definition:
 - PAP Ratio: The ratio of the peak power of the signal ENVELOPE to its average value.
 - Crest factor: The ratio of the peak power of the actual (real) transmitted waveform to its average value
- QPSK with square pulse shape has constant envelope
- Filtering QPSK causes the signal amplitude to vary significantly
 - Strongest dip occurs when signal passes through zero envelope
 - Instantaneous average power is reduced during this transition
 - Overall average power is reduced and the PAP ratio is increased
 - OQPSK and $\pi/4$ -QPSK reduce the PAP ratio by eliminating transitions through the origin (look at constellation plot)

PAP cont'd

- Ratio of the peak power of the modulated carrier to its average
 power
 - Ideal BPSK using square pulses.
 - Peak power = A^2
 - Average power = average power per period = A²/2
 - PAP ratio is a constant for all time.
 - Filtered BPSK
 - Peak power = A^2
 - Average power per carrier period = $A^2 a_n/2$, where $a_n < 1$ varies from one period of the carrier to the next
 - Overall signal's PAP ratio is lower than that of the ideal BPSK signal
- Power amplifier wastes DC power during cycles when carrier amplitude is small.
 - Lower amplifier power efficiency (ratio of DC power dissipation to output signal power)

Power Amplifier

Third order Intercept Point

